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Theorem of Koutsoures

The article below contains the
written work of a theorem which
I have discovered. I have named
it after myself since I am proud to
have discovered it, and I think it
shows that in today’s world of
mathematics there are still many
theorems to be sought out.

Theorem. Given n consecutive in-
tegers, the sum of these integers
and n? is equal to the sum of the
next n consecutive integers.

Kreample.

Take the four integers 7, 8, 9, 10.
Here n = 4.

T+ 849+ 10 + 42 = 50.

And the sum of the next four con-
secutive integers 11 + 12 4+ 13 + 14
is also 50.

F+tr+ @+ +E+2)=
x+3)+@x+4)+@+5)
32 + 3z + 8 = 3z + 12.

2 4+z+@x+1)+ (x+2)
+ (x+38) =
(x +4) + (x +5) + (x + 6)
+ x4+ 7
42 4 4r + 6 = 4z + 22

The left sides of the above special
cases suggest considering in general
n4+ne+1+24+3+ -+

. -1
n—l),orn2+nx+(n 2~M.

'Siimilar:ly, the right sides suggest the

general expression

ne+m+n+1+n+2+

+ 2n ~ 1), or nx + 7—&312_—1)
However it is an easy exercise in
algebra to show that the results, on
the left and on the right, are equal:
nt + nx + QL—EM = nr

n(8n — 1)

T3

On both sides, nx is the same. So we
need to show that n? + (r = Dn

2
n3n — 1)

is the same as 5

_ _
(Continued from page 5, column 8)
_(n—l_)An 2 +n? —n

2
Wty 3

_3n* —n

2

n(3n — 1)
=y

Thus, the theorem is proved.

In this proof, #n can be any posi-
tive integer, and x can be any inte-
ger at all.

JIM T. KOUTSOURES

Grade 10

8 Maine East HS
Morton Grove, Hllinois
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Koutsoures-Baker
Theorem

In the November, 1971, issue of
the Mathematics Student Journal,
there is an interesting article by
Jim T. Koutsoures, a tenth grade
student at Maine East High School
in Morton Grove, Illinois. This
young man has developed his own
theorem, which he calls the Theo-
rem of Koutsoures. The theorem
is stated as follows:

Theorem : Given n consecutive
integers, the sum of these inte-
gers and n? is equal to the sum of
the next n consecutive integers.

An illustration of how the theo-
rem may be applied is given, and a
proof has also been presented. It
is indeed gratifying to note that a
student has discovered an impor-
tant mathematical principle on his
own. The present author has found
a generalization of the Theorem of
Koutsoures, which deals with the
concept of progressions. This theo-
rem will be referred to as the
Koutsoures-Baker Theorem, and it
may be stated as follows:

Theorem: If the common differ-
ence of an arithmetic progression
is denoted by d, then the sum of the
first k terms of the progression,
increased by dk2, is equal to the
sum of the next k terms of the
progression.
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Example: Let d=4 and k=5.
Then dk®*=100 and,

24 428432 +364404-(100)
=44 +484-52456460.

Proof of Theorem: Let the arith-
metic progression be denoted by:

at+(a+d)+(a+2d)+ ...
+[a+(k—1d].

The sum of these terms is
5 2a+k-1)d. (1)

The next k terms of this progres-
sion are:

la+kd] 4+ [a+(k+1)d]
+ la+(k+2)d]
+ ...+ [(a+kd)+(k=1)d].

The sum of these terms is

,l; [2a+42kd - (k- 1)d]. (2)

A comparison of (1) and (2) pro-
duces the following identity:

K a+(k—1)d) + kd =

K [2a-+2kd +(k—1)d]

which completes the proof.

by Dr. BETTY L. BAKER
Hubbard High School
Chicago, Illinois
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